일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- DASH
- 성능
- qgis
- 공간시각화
- QGIS설치
- 빅데이터분석기사
- CUDA
- pytorch
- fastapi
- K최근접이웃
- 3유형
- GPU
- webserving
- streamlit
- Kaggle
- gradio
- dl
- 실기
- Ai
- 공간분석
- 딥러닝
- ml 웹서빙
- 인공지능
- 머신러닝
- 1유형
- 캐글
- 예제소스
- 2유형
- KNN
- ㅂ
- Today
- Total
목록2025/01/01 (2)
에코프로.AI

이전 섹션에서는 가장 간단한 사용 사례인 짧은 길이의 단일 시퀀스에 대해 추론을 수행하는 방법을 살펴보았습니다. 하지만 이미 몇 가지 의문이 생겼습니다:여러 개의 시퀀스를 어떻게 처리하나요?길이가 다른 여러 시퀀스를 어떻게 처리하나요 ?어휘 색인이 모델이 잘 작동하는 데 필요한 유일한 입력일까요?시퀀스가 너무 길다는 게 있을까?이러한 질문이 어떤 종류의 문제를 제기하는지 살펴보고, 🤗 Transformers API를 사용하여 이러한 문제를 어떻게 해결할 수 있는지 알아보겠습니다. 모델은 일괄 입력을 예상합니다.이전 연습에서 시퀀스가 숫자 목록으로 변환되는 방식을 살펴보았습니다. 이 숫자 목록을 텐서로 변환하여 모델로 보내 보겠습니다.import torchfrom transformers import ..

Tokenizers 는 NLP 파이프라인의 핵심 구성 요소 중 하나입니다. Tokenizers 는 텍스트를 모델에서 처리할 수 있는 데이터로 변환하는 한 가지 용도로 사용됩니다. 모델은 숫자만 처리할 수 있으므로 Tokenizers 는 텍스트 입력을 숫자 데이터로 변환해야 합니다. 이 섹션에서는 토큰화 파이프라인에서 정확히 어떤 일이 일어나는지 살펴보겠습니다. NLP 작업에서 일반적으로 처리되는 데이터는 원시 텍스트입니다. 다음은 이러한 텍스트의 예입니다:Jim Henson was a puppeteer 하지만 모델은 숫자만 처리할 수 있으므로 원시 텍스트를 숫자로 변환하는 방법을 찾아야 합니다. 이것이 바로 토큰화 도구가 하는 일이며, 이를 수행하는 방법에는 여러 가지가 있습니다. 목표는 가장 의미 있는..